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LINEAR AND NONLINEAR DYNAMICS OF
CANTILEVERED CYLINDERS IN AXIAL FLOW.
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This paper is the first in a three-part study of the dynamics of cantilevered cylinders in axial
flow. After an extensive literature review, the physical dynamics of the system is examined;
specifically (a) the experimental behaviour of elastomer cylinders in water flow, and (b) the
energy transfer mechanisms, discussed from a work–energy perspective without solving the
equations of motion. In general, the system loses stability by divergence and, as the flow
velocity is increased, it is subject to second- and third-mode flutter, provided that the free end
is well-streamlined; if, however, the free end is blunt, these instabilities do not occur.
Oscillations are generally three-dimensional (orbital). The experimental observations are in
good qualitative agreement with those expected from the energy transfer analysis, and in
reasonably good quantitative agreement with solutions of the linearized equation of motion
(obtained from Part 3 of this study). For some shapes of the free-end, resonances are observed
with a fairly constant Strouhal number. # 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Understanding and prediction of the dynamics of cylinders in axial flow is of interest
for the design and trouble-free operation of heat-exchanger tubes, nuclear fuel elements,
control rods and monitoring tubes, towed flexible cylinders for water transportation,
towed acoustic arrays for oil exploration, and high-speed trains; also, by analogy, for
paper making and tape winding.

Historically, the first specific study was by Hawthorne (1961) and was concerned with
the stability of a long sausage-like towed container (a ‘‘Dracone’’), conceived for the
transport of oil by sea, following the Suez crisis of 1956; later, it found its greatest use in
transporting fresh water to arid Greek islands from the mainland, and other, lighter than
sea-water cargo elsewhere.

This analysis was extended and generalized for cylinders with any boundary conditions,
e.g. simply supported, cantilevered and so on, and was supported by experiments, by
Pa.ııdoussis (1966a, b). An error in the manner of incorporating the viscous forces into the
equation of motion was corrected by Pa.ııdoussis (1973) and the theory further extended to
deal with cases of confined flow; this correction, however, came too late to prevent the use
yPresently at CAE Electronics Ltd, 8585 chemin de la C #oote-de-Liesse, Saint-Laurent, QC, Canada H4L 4X4.

0889-9746/02/060691+21 $35.00/0 # 2002 Elsevier Science Ltd. All rights reserved.
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of the original formulation by others, e.g., Ortloff & Ives (1969). The divergence (buckling)
critical flow velocity for a pinned-free cylinder has been determined analytically by
Triantafyllou & Chryssostomidis (1984). The dynamics of long, very slender cylinders}
modelled as strings, rather than beams}has been studied by Triantafyllou &
Chryssostomidis (1985), among others.

This work was later pursued further to study the dynamics of clustered cylinders in axial
flow (Chen 1975; Pa.ııdoussis 1979; Gagnon & Pa.ııdoussis 1994a, b), both because of its
inherent interest and for application to tube-in-shell type heat exchangers and nuclear
reactors. Also, additional extensions have been made, to deal with the dynamics in highly
confined annular flow}see, e.g. Pa.ııdoussis et al. (1990) and Mateescu et al. (1994a, b,
1996).

The dynamics of towed cylinders is of interest, not only for the Dracone problem, but
also for the towed ‘‘arrays’’ (‘‘seismic arrays’’ or ‘‘acoustic streamers’’) used in oil
exploration. Extremely long (kilometer-long) arrays of several parallel cylinders, housing
sonar sensors, are towed on the sea surface or sufficiently submerged to avoid wave-
induced motions. The sensors pick up acoustic signals directed at and reflected from the
sea-bed strata. Properly analysed, these signals can reveal the geological make-up of the
strata, and hence the existence of oil or gas. Apart from Hawthorne’s original work,
studies on towed systems were made by Pa.ııdoussis (1968, 1970),1 Pa.ııdoussis & Yu (1976),
Dowling (1988a, b), Triantafyllou & Chryssostomidis (1989), and many others. Other
variants of the system have also been studied, e.g., the dynamics of tapered (conical)
cylinders, articulated cylinders, and so on. For a more complete survey of the topic, the
interested reader is referred to Pa.ııdoussis (2002).

The dynamics of cylinders in axial flow is dynamically similar to that of axially moving
one-dimensional structures in quiescent fluid, such as paper ‘‘web’’ in paper-making, and
travelling chains, bands and tapes}see, e.g., Mote (1968, 1972), Pramila (1986, 1987),
Bejan (1982), Wickert & Mote (1990), Chang & Moretti (2000). The dynamics of this
system is also closely related to that of pipes conveying fluid}see, e.g., Pa.ııdoussis (1998).
This analogy will be used extensively in what follows.

The fluid forces exerted on a cylinder in axial flow may be viewed as being made up,
principally, of inviscid fluid-dynamic forces, obtainable via slender body or three-
dimensional potential flow theory. The slender-body approximation for the simplest
possible system, yields the following equation of motion:

EIð@4y=@x4Þ þMU2ð@2y=@x2Þ þ 2MUð@2y=@x@tÞ þ Fv þ ðM þmÞð@2y=@t2Þ ¼ 0; ð1Þ

where EI is the flexural rigidity and m the mass per unit length of the cylinder, U the flow
velocity, y the lateral deflection, x the axial coordinate and t is the time;M is the virtual (or
‘‘added’’) mass of the fluid per unit length, which for unconfined flow is equal to the
displaced mass of the fluid (M ¼ rA, where A is the cross-sectional area of the cylinder). It
is noted that in addition to the inviscid forces, there are coupled lateral and axial viscous
forces due to surface traction exerted on the surface of the cylinder, represented by Fv in
equation (1)}see equation (2) here and Part 2 of this study (Lopes et al. 2002); in contrast
to internal flow, these are not cancelled by pressure-drop-related forces, since the pressure
drop in the external flow is generally unrelated to the frictional forces on the cylinder
(controlled by the boundary layer about it). If one puts Fv ¼ 0 and reinterprets M as the
mass per unit length of the fluid conveyed, equation (1) becomes that of the fluid-
conveying pipe (Pa.ııdoussis 1998).
1With the aforementioned error in the viscous terms, and with it corrected, respectively.
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It is not surprising therefore, that the dynamics of this system is similar, but not
identical to that of the fluid-conveying pipe. Indeed, the differences in the dynamical
behaviour between the internal and external flow systems are among the principal
motivations for this work. Thus, according to linear theory, cylinders with both ends
supported lose stability by divergence and at higher flow velocities by coupled-mode
flutter. This dynamical behaviour is identical to that predicted for pipes conveying fluid,
with the following important differences: (i) it has been shown by nonlinear theory
(Holmes 1977, 1978) that coupled-mode flutter is impossible for pipes conveying fluid and,
indeed, has never been observed in experiments, and (ii) post-divergence coupled mode
flutter has been observed experimentally for cylinders in axial flow (Pa.ııdoussis 1966b).
What is responsible for this important difference?

Cylinders supported only at the upstream end, e.g., cantilevered ones, generally lose
stability by divergence and then, at higher flow velocities by single-mode flutter}as
predicted by linear theory and observed in experiments. This behaviour is strongly
dependent on the shape of the free end; indeed, the dynamics is as just described, provided
the free end is fairly well streamlined. If the free end is blunt, however, neither divergence
nor flutter occur; yet, the analogy to the internal flow system, superficially at least, is
closest for the blunt-ended cylinder. Hence, again, the question arises as to how, as well as
why, divergence can occur for the cylinder-in-flow system but not for the pipe-conveying
fluid (Pa.ııdoussis 1998).

It is evident from the foregoing that there are sufficient practical applications to
motivate the considerable effort devoted to this topic. It is fair to say, however, that a large
component of this research has been curiosity-driven (Pa.ııdoussis 1993). In fact, the set of
questions that have been posed when comparing the internal- and external-flow problems
is of purely fundamental rather than practical interest.

Most of the work just cited on the topic under consideration concentrates on the linear
dynamics of cylinders in axial flow. This three-part study represents perhaps the first
attempt to consider the nonlinear dynamics of the system, and to present a cogent linear–
nonlinear picture of the stability of the system, supported by a new series of experiments.
Part 1, this paper, deals with the physical dynamics of the system, namely (i) the
experimental observations of the dynamical behaviour, and (ii) the mechanisms of energy
transfer, particularly concerned with flow-induced instabilities. Part 2 (Lopes et al. 2002) is
entirely devoted to the equations of motion and discussion of methods of analysis. Part 3
(Semler et al. 2002) gives most of the theoretical results, linear and nonlinear, and the bulk
of the comparison with theory.

2. EXPERIMENTS

2.1. THE APPARATUS

Experiments were conducted at two different times, in different locations, and with
different apparatus.

The first set of experiments were conducted in the 1960s at the Chalk River Nuclear
Laboratories of Atomic Energy of Canada (AECL). They are well-described in Pa.ııdoussis
(1966b), and hence only the scantiest of description of the apparatus needs be given here.
In these experiments, the flexible cylinders were mounted horizontally, in the horizontal
test-section of a water-circulating rig. Most of the cylinders were manufactured by casting
liquid silicone rubber in specially made moulds and vulcanized at room temperature, in the
manner described in Pa.ııdoussis (1998, Appendix D). In most cases, the cylinders integrally



Figure 1. Diagrammatic view of part of the water tunnel used in the McGill experiments, showing the vertical
test-section, with a flexible cantilevered cylinder mounted in it.
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contained a thin blade (metal strip). The cylinder was mounted in the test-section such that
the blade was in a vertical plane, thus ensuring that (i) the cylinder is horizontal at
equilibrium (preventing sag, positive or negative), even for cylinder densities higher
(typically) or lower (unusually, in the case of hollow cylinders) than that of water, and (ii)
the oscillation takes place in a horizontal plane. Typical parameters for the cylinders used
are: diameter D ¼ 16.6mm, length L ¼ 390mm, flexural rigidity EI ¼ 6.39 � 10�3 N m2,
mass per unit length m ¼ 0.25 kg/m. Generally, a streamlined, ogival2 rigid ‘‘end-piece’’, of
the same density as the cylinder, was glued at the free end of the cylinder; it could be
unglued and replaced by another, of different shape. Here, only some of the results from
this set of experiments will be presented, for completeness, since some types of experiments
were not repeated in the later set.

The second set of experiments were conducted in 1999–2000 at McGill University. The
test-section was vertical, in a water tunnel shown diagrammatically in Figure 1. The
flexible cylinder was mounted vertical, as shown in Figure 2. The cylinders were fabricated
in basically the same manner; in this case, however, no central metal strip was embedded
in the cylinder in most cases, as it was no longer essential. The test-section was larger than
in the previous tests (test-section diameter Dch ¼ 203mm), and so were the cylinders
(typically: D ¼ 25.4mm, L ¼ 520mm, m ¼ 0.577 kg/m, EI ¼ 5.59 � 10�2 N m2).

In both sets of experiments, flow straighteners, screens, and in the McGill experiments a
large flow-area reduction, were utilized to ensure an axial, uniform flow stream in the test-
section. Fluidelastic instabilities occurred at flow velocities for which the flow was
turbulent (the Reynolds number based on the cylinder diameter was � 5 � 104), and
2Ogive- or projectile-shaped.



Figure 2. Schematic of the test-section, showing a flexible cylinder mounted in it: (1) fixed ogival upstream
end; (2) cruciform support made up of symmetric-airfoil blades; (3) flexible cylinder; (4) ogival end-piece at the

free end.
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hence the velocity profile in the central part of the test-section may be assumed to be flat.
In the McGill experiments, the turbulence intensity in the empty test-section was 0.5% or
less.

In the experiments, the dynamics of the system was monitored, visually in the case of the
AECL experiments (apart from measuring flow velocities, frequencies of motion, and
such), and with the aid of a noncontacting optical motion-follower in the McGill tests, the
output of which could be stored on a digital oscilloscope and analyzed with an FFT signal
analyzer.

In each experiment the flow velocity was increased gradually from naught, and at each
step the dynamical state of the system was recorded.

2.2. GENERAL DYNAMICAL BEHAVIOUR

2.2.1. Cylinders fitted with a metal strip: planar motions

At small flow velocities, free motions were damped by the flow: small turbulence-induced
disturbances were damped quickly, increasingly so with increased flow velocity. At
sufficiently high flow velocities, however, the system became unstable provided that (i) the
free end tapered smoothly, and (ii) the cylinder was not too long. If these conditions were
met, as the flow velocity increased, the system first buckled [Figure 3(a)] and then
spontaneously developed second-mode flutter [Figure 3(b)]. At still higher flow velocities,
third-mode flutter was observed, followed, though rarely with the limited flow available,
by fourth-mode flutter. In the course of flutter, the free end sloped backward to the
direction of its motion for the greater part of the cycle. This ‘‘dragging’’ motion is
necessary to allow the cylinder to absorb energy from the fluid stream; see Figure 3(b) and
Section 3.2; cf. the form of a fluttering pipe conveying fluid (Pa.ııdoussis 1998, Section
3.2.2).
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Divergence developed slowly with increasing flow velocity, and it was not always
possible to determine the point of neutral stability accurately. The point of onset of
oscillatory instabilities, on the other hand, was usually very clearly defined. According to
linearized theory, once the threshold of instability is crossed, the amplitude of motion
should increase without limit. In fact, because of nonlinear effects, the maximum
displacement in buckling and the amplitude of amplified oscillations were limited to
usually one to three cylinder diameters. If the flow velocity was reduced below the point
where oscillatory instability first occurred, the oscillation persisted with reduced
amplitude; this also is an attribute of nonlinear behaviour.

Transition from divergence to second-mode flutter involved a gradual return of the
cylinder to its straight equilibrium configuration, before further increase in the flow
velocity resulted in unstable oscillation.3 Increasing the flow velocity further at this point
caused the amplitude and frequency of oscillation to increase, until the motion became
erratic and the frequency was gradually reduced to nil; the cylinder then appeared to be
buckled in its second mode. At this point, a small increase in the velocity precipitated
third-mode flutter of the system.

These general observations were the same for both the earlier experiments with motions
in a horizontal plane and the more recent ones with vertically hanging cylinders, provided
that motions were planar. Collectively, these observations show that the general behaviour
of the system with increasing flow velocity is in substantial qualitative agreement with
theory.

A cin!ee-film and video have been made, showing the development of these instabilities.
One remarkable sequence that was fortuitously captured on film occurred because flutter
on one occasion was large enough to cause impact of the free end on the flow-containing
channel. Eventually, while the camera was running, the glued end-piece came off and was
swept downstream, whereupon the cylinder was instantly stabilized and remained straight
thereafter! This is a graphic illustration that a system with a blunt end is stable.

2.2.2. Cylinders without metal strip: 3-D motions

If the cylinder did not contain a metal strip which effectively limited its motion to one
plane only, instability developed in that particular plane and, in the case of divergence,
remained in this plane. Amplified oscillation, on the other hand, soon degenerated into
a three-dimensional motion, in which the plane of oscillation rotated slowly while the
free end described a quasi-circular path; i.e., a kind of whirling, ‘‘orbital’’ motion developed,
but generallywith nonstationary nodes. This was the case inmost of theMcGill experiments,
except for a few that were made with a cylinder fitted with a metal strip.

Figure 4 shows photos of the instantaneous shape of the cylinder in divergence, second-
and third-mode flutter in a typical case, for a cylinder fitted with a fairly well-streamlined
end-piece. It is virtually impossible to discern the whirling character of the flutter from 2-D
pictures, but this is easier to see in the video which has been made for the dynamics of a
cylinder fitted with several different end-pieces.

Further experiments were conducted with a hollow cylinder fitted with a metal strip and
mounted vertically, as well as with another similar cylinder without a metal strip. The
dynamics of the two systems, with and without the metal strip, was essentially the same,
despite motion being planar in one case and whirling in the other. Indeed, apart from this
2-D/3-D difference, the dynamics in the two cases was qualitatively quite similar in every
way.
3 In some cases with the cylinders hanging vertically, however, the cylinder retained a degree of bowing at the
onset of flutter.



Figure 3. Photographs of a flexible cantilevered cylinder (a) in divergence, and (b) undergoing second-mode
flutter. In this case the cylinder contains a vertical metal strip, and the motion is in a horizontal plane.



Figure 4. Photographs of a vertical flexible cylinder in divergence at relatively low flow velocity, (b)
divergence at relatively high flow velocity, as the threshold of flutter is approached; (c) in second-mode 3-D

flutter; (d) in third-mode 3-D flutter.
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Nevertheless, there were some differences in the dynamics of cylinders in 2-D motion
(horizontal cylinder) or 3-D motion (vertical cylinders), specifically in the transition from
one instability to another; e.g., in the latter, transition from second- to third-mode flutter
was not usually preceded by a quasi-stationary (vanishing frequency) state, but it involved
erratic, perhaps quasi-periodic, oscillations}to be discussed further in Part 3.

Additional experiments were conducted with a vertical blade-fitted cylinder, with three
holes drilled in the ogival end-piece, such that some of the fluid could go transversely
through, rather than around the end-piece, as the cylinder oscillated. Two such perforated
end-pieces were used, differing only in the pattern of the drilled holes. With one end-piece,
both divergence and flutter were eliminated in this way; with another, only divergence was,
while flutter still occurred, but at higher flow velocity.

Similar observations were made with a cylinder pinned at the upstream end and free at
the other (Pa.ııdoussis 1966b). The specific gravity of this cylinder was very nearly that of
water, so that gravity and buoyancy forces balanced almost exactly, making experiments
in the horizontal plane feasible. The various instabilities occurred at lower flow velocities
than for a similar cylinder with the upstream end clamped, and it was easily possible to
observe fourth-mode flutter.

2.3. QUANTITATIVE ASPECTS

Several series of experiments have been conducted, in which some parameters were varied
systematically, namely the shape of the free end, the mass ratio b, and the slenderness ratio
e}to be defined shortly. Some of the early experimental results have been presented in
Pa.ııdoussis (1966b), where they were compared with the uncorrected theory (see
Introduction). A portion of these were compared to the corrected theory in Pa.ııdoussis
(1973), while some were left out. These latter, together with the newer experiments, are
presented here.

Although comparison of experiment with theory to a large extent is done in Part 3 of
this paper}especially the nonlinear aspects}it is more efficient to show the experimental
results to be presented here together with the theoretical results. For this purpose, but also
because it will be needed for Section 3, the linearized equation of motion is given here; for
its derivation, see Part 2.

For a vertical cylinder of mass per unit length m, flexural rigidity EI , length L, diameter
D, and cross-sectional area A, in unconfined flow parallel to the cylinder axis of density r
and axial flow velocity U, the linearized equation of motion (Pa.ııdoussis 1973; Lopes et al.
2002) is
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In this equation, rA 	M is the virtual (added) mass of the fluid per unit length, CN and
CT are the frictional forces in the normal (transverse) and longitudinal directions,
respectively, CD is a linearized form drag coefficient4 for transverse motions, Cb is the
4This coefficient is dimensional, with dimensions of velocity.
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coefficient of base drag acting in the longitudinal direction at the free end of the cylinder,
and E * is the Kelvin–Voigt damping coefficient in the cylinder material; y is the transverse
displacement, and s is the curvilinear coordinate along the cylinder centre-line.

The boundary conditions are: yð0Þ ¼ 0; ð@y=@sÞs¼0 ¼ 0 and
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and where it is understood that A 	 AjL�l ;D 	 DjL�l ;m ¼ mjL�l ;M ¼ rA. In equation
(3a), the parameter f , normally f51, is a measure of departure from the ideal lift that
would arise if the end of the cylinder were perfectly streamlined, and there were no flow
separation over it}in which case f ¼ 1. Thus, f ! 1 corresponds to a well-streamlined
end-piece, while f ! 0 to a blunt end; refer to Section 6 of Part 2. Of course, in addition to
f diminishing, as the end becomes blunter, Cb would be expected to increase
correspondingly.

These equations are rendered dimensionless by defining x ¼ s=L; Z ¼ y=L; t ¼
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The dimensionless linearized equation of motion is given in Part 2 as equation (55), and
the boundary conditions at x ¼ 1 in equations (67).

In what follows, in this paper, we usually take a ¼ 0; cd ¼ 0, and often cN ¼ cT ¼ cf .

2.3.1. The critical flow velocities

Figure 5 shows the average dimensionless tip displacement, %ZZ* ð1Þ ¼ %yyðLÞ=D, of a cylinder
with two different ogival ends (both reasonably well streamlined) as the dimensionless flow
velocity U increases. Ideally, the displacement should be zero, from U ¼ 0 to the critical
flow velocity for divergence, Ucd , when the amplitude should increase sharply, with infinite
slope, %ZZ* ð1Þ=U ¼ tan�1 1

2
p


 �
. In reality, however, one obtains nonzero %ZZ* ð1Þ for all U > 0.

In fact, one can discern two zones in the figure: (i) for U52 approximately, the rate of
increase of %ZZ* ð1Þ with U is moderate, and this may be identified with the growth
(exaggeration) of initial imperfections, both geometric and structural; (ii) for 25U52.5
approximately, there is a steeper rate of increase of %ZZ* ð1Þ with U, and this may be
identified with the development of divergence. The results in Figure 5 are relatively



Figure 5. The dimensionless mean displacement of the free-end tip of the cylinder, %ZZ* ð1Þ ¼ %yyðLÞ=D, as a
function of increasing dimensionless flow velocity, U, showing the development of divergence. The dots and

crosses represent experiments with two different but similar ogival ends.
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‘‘clean’’, whereas in other runs they are more ambiguous. Consequently, the rougher but
more reliable criterion of %ZZ* ð1Þ surpassing an arbitrary value, typically 1.0, was used
alternatively for the threshold of divergence. Finally, for U > 2.5 approximately, the
buckled shape of the cylinder begins to become S-shaped, indicating the increasing
contribution of the second beam mode in the in-flow first-mode shape; the rate of increase
of %ZZ* ð1Þ with U becomes smaller; in fact, for high enough U, a diminishing %ZZ* ð1Þ may
result.

By monitoring the r.m.s. amplitude of vibration with increasing flow velocity, one can
easily pin-point the onset of flutter, as shown in Figure 6. In these results, the
noncontacting sensor was trained at x 	 x=L ¼ 0.39. It is seen that there is little doubt in
this case as to where the threshold of flutter is. The reduction of amplitude, after a high of
0.37D is reached, reflects gradual changes in modal shape with flow velocity.

Figure 7 shows the PSDs of the vibration of the cylinder, with the same sensor trained at
the same location. Figure 7(a,b) shows typical spectra of the turbulence-induced vibration
for pre-divergence flow velocities, U5Ucd . The dominant vibration frequencies at f1 ’
0.6; f2 ’ 2.9 and f3 ’ 8.0Hz may be identified with the first-, second- and third-mode
eigenfrequencies of the system. Here, it should be noted that the eigenfrequencies vary
with U, but they remain identifiable, more or less at the values cited.

In Figure 7(a), and also 7(b) if the location of sensing the vibration is taken into
account, first-mode vibration at f1 dominates. This is not necessarily so for post-
divergence flow velocities, U > Ucd , as shown in Figure 7(c,d), where f2 becomes more
prominent. Nevertheless, a component at f1 remains identifiable in most cases. This
suggests that, in its buckled state, the cylinder has nonvanishing first-mode frequency, i.e.
nonzero stiffness. This statement, heretical from a linear dynamics perspective, is perfectly
reasonable in nonlinear terms.

Once second-mode flutter develops, at U ¼ Ucf 2; f2 is clearly dominant, as shown in
Figure 7(e). Similarly, once third-mode flutter is established at U ¼ Ucf 3, the dominant
frequency is f3, as seen in Figure 7(f).



Figure 7. PSDs of vibration at x ¼ 0.39: (a,b) at pre-divergence flow velocities; (c,d) at post-divergence flow
velocities; (e) in the course of second-mode flutter; (f) in the course of third-mode flutter.
(a) U ¼ 0.34 m=s ðU ¼ 0.53Þ; (b) U ¼ 1.34 m=s ðU ¼ 2.10Þ; (c) U ¼ 1.66 m=s ðU ¼ 2.61Þ;

(d) U ¼ 2.01 m=s ðU ¼ 3.16Þ; (e) U ¼ 3.37 m=s ðU ¼ 5.29Þ; (f) U ¼ 4.50 m=s ðU ¼ 7.08Þ.

Figure 6. The r.m.s. amplitude of vibration at x ¼ 0.39; ½Z* ð0.39Þ�r:m:s, versus the dimensionless flow velocity
U, showing the onset of second-mode flutter.
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2.3.2. Effect of free-end shape

A number of tests were conducted in which a cylinder was successively fitted with several
ogival end-pieces, ranging from well-streamlined to blunt shapes. At the end of each test,
the end-piece was removed and a new one glued in its place. The sequence was repeated
several times, partly to overcome the effect of misalignments and to check repeatability
(Pa.ııdoussis 1966b).

The critical flow velocities for divergence, Ucd , and flutter, Ucf , are compared
with theoretical values in Figure 8 for the horizontal system (the earlier set of
experiments).5 The results in each case cover a considerable range in U, indicating that
small misalignments may have considerable effect on stability; this is especially true for
Ucd , the determination of which involved an element of subjective judgement. The arrows
indicate that the system remained stable up to the maximum flow velocity of about 6m/s
attainable with the apparatus, corresponding to U ’ 14. Under such circumstances,
‘‘stable’’ means that no distinct divergence or oscillation developed; nevertheless, there
were damped, apparently random motions of irregular frequency and amplitude.

For an ideally slender end, f ! 1 and cb ! 0; while for blunter ends, f51 and cb > 0.
According to theory, decreasing f stabilizes the system for divergence, while increasing cb
destabilizes it.6 These conflicting effects may have contributed to the poor agreement
between theory and experiment for divergence, since for the theoretical results cb ¼ 1 � f
was taken arbitrarily throughout. The main reasons, however, are (i) the sensitivity of Ucd

to imperfections, and (ii) the lack of refinement in the analytical model. Nevertheless, it is
clear that, for a sufficiently blunt end, no divergence occurs.

For flutter, theory predicts that decreasing f and increasing cb both have a stabilizing
effect, as observed. Qualitatively, agreement with theory is considerably better in this case.
Again, for a sufficiently blunt end, flutter is neither observed nor predicted in this flow
velocity range.

Similar experiments were conducted in the vertical system (recent experiments). The
experimental results for Ucd ;Ucf 2 and Ucf 3 are compared with theory in Figure 9;
theoretical results for Ucd and Ucf 2 only are shown, since the transition from second- to
third-mode flutter is generally nonlinear, as discussed in Part 3. Once more, it is seen that if
the shape of the end-piece is sufficiently blunt, the system remains stable to the maximum
available flow velocity, in this case 4.9m/s or U ¼ 7.7. It is of interest that, within the
range of experimental error, the fine detail of the end-piece shape does not have as strong
an effect on stability as might have been expected.

The dynamical behaviour of the system with end-piece #92 was peculiar, and it is
discussed further at the end of this subsection; it should be remarked here, however, that
the observed flutter, shown as second-mode flutter in Figure 9, could well really be third-
mode flutter. Some additional experiments were conducted with end-piece #92S, a
shortened version of #92 in which the cylindrical part of the end-piece (�10mm) was
machined off. In this case, there was no divergence at all, but flutter still occurred at
Ucf ’ 7.5, approximately the same as for the longer end-piece.

Experiments were also conducted with shortened versions of end-pieces #35 and #90,
but similar results as for the longer ones were obtained.

Some further experiments were conducted with one end-piece (#15 in Figure 9), the end
of which was lopped off progressively more radically. The experimental results are given in
Table 1, where it is seen that taking off a small amount (5 or 10mm) results in a reduced
5See Section 6 of Part 2 on the quantitative determination of f .
6For instance, for a system e cf ¼ 0.5 and f ¼ 0.8, for divergence we find Ucd ¼ 1.93 for cb ¼ 0; Ucd ¼ 1.75 for
cb ¼ 1; Ucd ¼ 1.65 for cb ¼ 2. For flutter, however, Ucf ¼ 7.51 for cb ¼ 0, and Ucf > 10 for cb ¼ 1.



Figure 8. The critical flow velocities for divergence, Ucd , and second-mode flutter, Ucf 2, as functions of the
free-end shape for the horizontal system: I, experimental data; }, theoretical results for varying f and cb ¼ 1� f
(other parameters: b ¼ 0.46; ecN ¼ ecT ¼ 0.25; g ¼ 0; cd ¼ 0; we ¼ 0.01; %wwe ¼ 0). The experimental results are

from Pa.ııdoussis (1966b) and the theoretical ones with the present theory.
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Ucd ; evidently this is associated with f being only slightly reduced but cb becoming
substantially higher as a result of the now partly flat end. The effect of a decreased f and
higher cb is stabilizing for flutter, as already remarked; hence, Ucf increases. Eventually,
however, as the end is cut enough, the system is stabilized in both divergence (Ucd ) and
second- and third-mode flutter (Ucf 2 and Ucf 3, respectively).

Finally, the unusual dynamical behaviour of the cylinder fitted with the #92 double-
curvature end-piece should be commented upon. This system developed low-amplitude
resonances before the onset of divergence, probably associated with vortex shedding at the
free end. The cylinder oscillated in its second mode, with increasing amplitude as the flow
velocity was increased, reaching a maximum and then gradually abating. This was



Figure 9. The critical flow velocities for divergence, Ucd , and the second- and third-mode flutter, Ucf 2 and
Ucf 3, respectively, as functions of the free-end shape for the more recent experiments with vertical cylinders
(without metal strip): I, experimental data; }, theoretical results for varying f and cb ¼ 1� f (other parameters:

b ¼ 0.47; e cN ¼ e cT ¼ 0.5; g 	 gC � gF ¼ 1.84; cd ¼ 0; we ¼ 0.00667; %wwe ¼ 0.00785).
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Table 1

Dimensionless critical flow velocities for a cantilevered cylinder with end-piece #15, the end of which
was lopped off, progressively more. The asterisk denotes irregular flutter about the buckled state

End-shape Ucd Ucf 2 Ucf 3

Intact (37mm) 2.0–2.2 5.88 7.22
�5mm lopped off 1.6–1.8 6.01 7.62
�10mm lopped off 1.7–1.8 6.73* 7.86
�13mm lopped off 1.8–2.0 } }
�15mm lopped off 2.2–2. 4 } }
�20mm lopped off } } }
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followed by third-mode vibration, behaving similarly, and then fourth-mode vibration.
The vibration amplitude was � 0.5D for the second-mode resonance, and smaller for the
higher ones. The resonance frequencies were f2 ’ 3.1Hz, f3 ’ 8.0Hz and f4 ’ 15.4Hz
and the corresponding Strouhal numbers, St ¼ fD=U, were St2 ’ 0.15 and
St3 ’ St4 ’ 0.17. Similar behaviour was observed with the shortened version of #92
end-piece, #92S. The frequencies were similar, namely f2 ’ 3.0Hz, f3 ’ 8.1Hz and
f3 ’ 15.5Hz, as were the Strouhal numbers: St2 ’ 0.16; St3 ’ 0.18 and St4 ’ 0.18 or
0. 19. Similar phenomena were observed in experiments with end-piece #90. However, this
behaviour was unique to these two end-shapes.

2.3.3. Effect of the mass ratio b
Experiments in which b was varied were conducted in the horizontal system with two
hollow cylinders successively filled with various substances, such as air, water, sand,
lead shot and mercury. Some of these results are presented in Pa.ııdoussis (1973), and a
fuller set in Pa.ııdoussis (2002). They will not be repeated here in the interests of brevity.
Suffice it to say that the effect is substantial but not very strong; e.g. the values of Ucf 2

for the hollow and heaviest cylinder range between 3.8 and 5.8 for b ’ 0.32 and
0.60, respectively.

2.3.4. Effect of surface roughness and slenderness

Experiments were conducted with cylinders artificially roughened, in one case by rubbing
with coarse sandpaper, and in another by gluing cotton thread helically around the
cylinder (Pa.ııdoussis 1966b). It was found that a small stabilizing effect resulted, mainly on
flutter: with the thread, Ucf was increased from 5.25 to 6.9–7.5. When rubber rings (1

2
in

inside and 5
8
in outside diameters) were fitted over the cylinder (D ¼ 0.575 in) at equally

spaced intervals, no instability occurred at all.
Experiments were also conducted with one long cylinder ðe ¼ L=D ¼ 46Þ, progressively

reducing its slenderness by cutting pieces off the free end and then replacing the same end-
piece. As seen in Table 2, when e > 24 no divergence developed, while at e > 40 there was
no second-mode flutter, at least to the maximum attainable flow velocity. At e ¼ 39.5 the
amplitude and frequencies of the flutter were erratic, the latter vanishing occasionally
while the cylinder retained an S-shape.

The explanation given at the time (1966) was that, as e (and hence ecf ) increases, so does
the stability of the system. This is undoubtedly so (see Part 3), and it agrees qualitatively
with Triantafyllou & Chryssostomidis’ (1984) finding that there exists a maximum ecf
ð’ 1.4Þ beyond which there is no divergence for f50.75 approximately. However, to
eliminate the instabilities altogether, the value of e necessary would be much larger than



Table 2

The effect of e on the critical flow velocities for
divergence ðUcd Þ and flutter ðUcf Þ; (Pa.ııdoussis 1966b)

e Ucd Ucf

16.3 2.01 4.58
22.9 3.08 4.54
25.9 } 4.94
39.5 } 5.85
45 } }
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achieved in these experiments. A full explanation of this phenomenon goes beyond the
theoretical model of Part 2, and should take into account the thickening of the boundary
layer (when the length is large or the rings are present) and the resulting ‘‘insulating effect’’
of the cylinder from the mean flow, as discussed in Hannoyer & Pa.ııdoussis (1978).

3. MECHANISMS OF INSTABILITY

The objective here is to attempt physical explanations of the mechanisms of the observed
divergence and flutter instabilities, by means of the equations of motion and the observed
dynamical behaviour.

3.1. THE MECHANISM FOR DIVERGENCE

For cylinders with a free downstream end, more particularly cantilevered cylinders, the
main destabilizing effect is associated with the tapered (ogival) free end. The destabilizing
force is associated with the shear boundary condition (3a) which, after elimination of the
time-dependent terms and taking s ¼ x for linear analysis, becomes

EI
d3y

dx3
þ fMU2 dy

dx
¼ 0: ð6Þ

Clearly, from the experiments, if f ¼ 0, i.e. in the absence of a tapered end, divergence is
impossible. An interesting connection between the term fMU2ðdy=dxÞ and the lift on a
low-aspect-ratio (slender) wing has been pointed out by Triantafyllou (1998).

To best appreciate this connection, it is useful to re-write the second term in (6) as
M *Uv, where M * ¼ f M ¼ f rA and v ¼ Uðdy=dxÞ. Furthermore, it is useful to recall
how this term arises (see Part 2), namely via

� f
Z L

L�l

@

@t
þU

@

@x

� �
½MðxÞv�dx ¼ �f

Z L

L�l
U

d

dx
½rAðxÞv� dx

¼ f rAUv 	M *Uv; ð7Þ

in the last two versions of which it is understood that A ¼ AjL�l and M * ¼M * jL�l,
corresponding to the cylindrical part of the body; to obtain this relationship, the fact that
this is a static analysis has been invoked, as well as the assumption (Part 2) that v is
constant over the tapered end. It is now clear from (7) that if dA=dx ¼ 0, there would be
no lift; i.e., in the absence of a tapered end-piece, there would be no lift and hence no
divergence.

For a slender wing of chord c and span s, such that the aspect ratio AR 	 s=c� 1, the
lift is L ¼ 1

2
rU2ACL, in which A ¼ cs. Taking CL ’ ðdCL=dcÞc ’ ðdCL=dcÞðv=UÞ and
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recalling that dCL=dc ’ 1
2
p(AR) from slender wing theory,7 it is seen that

L ¼ ðp=4Þr s2Uv ¼M *Uv, where M * is the added mass of the wing. This is identical,
therefore, to the expression for the cylinder-tail boundary condition obtained by slender-
body theory. Furthermore, slender wing theory predicts (Katz & Plotkin 1991, Section
8.2.2) that there is lift only if the wing form is tapered (e.g., as it is for a delta wing). Hence,
the similarity to the cylinder with a tapered end is quite close (Triantafyllou 1998).

A special set of calculations have been conducted for the cylinder, in which viscous
forces were neglected, with just this side-force at x ¼ L taken into account. The resultant
Ucd is reasonably close (for high enough f ) to that given when considering the forces on
the rest of the cylinder as well: e.g., for f ¼ 0.8, for end-force only, one obtains
Ucd ’ 1.78, and taking the forces on the rest of the body into account Ucd ’ 2.03; indeed,
the forces on the rest of the cylinder tend to stabilize the system for divergence.

One interesting observation that has been made in the discussion of experimental results
is that the effect of form drag on divergence is destabilizing. This may be clarified by
analogy to a taught string. The work doneW in displacing the string a small distance yðxÞ
from equilibrium}cf. Morse (1948, p. 30)}is

W ¼ �1
2

Z L

0

y
d

dx
TðxÞ

dy

dx

� �
dx ¼ �1

2
TðxÞy

dy

dx

� �L
0

þ
1

2

Z L

0

TðxÞ
dy

dx

� �2

dx:

If the string, or cylinder, is supported at both ends, the first term vanishes, while the
second is always positive. If, however, there is a free end, and if y and dy=dx have the same
sign, then the first term may dominate, which would mean a negative-stiffness,
destabilizing effect. As seen in Figures 3(a) and 4(a), y and dy=dx do have the same
sign. Hence, setting TðLÞ ¼ 1

2
rD2U2Cb shows that increasing the form drag may indeed be

destabilizing; cf. the results in footnote 6 (Section 2.3.2).

3.2. THE MECHANISM OF FLUTTER

Using equation (2) again, the rate of work done by the fluid on a cylinder with any
boundary condition, in the course of free periodic motion, is

dW

dt
¼ �

Z L

0

EI ’yyy0000dx�
Z L

0

’yyMð .yyþ 2U ’yy0 þU2 y00Þ dxþ
Z L

0

’yyfB� Fxgy00dx

� 1
2
cN

Z L

0

ðMU=DÞ ’yyð ’yyþUy0Þdx� 1
2
c*

Z L

0

ðM=DÞ ’yy2 dx�
Z L

0

’yyðm� rAÞgy0 dx;

where c* ¼ ð4=pÞCD with dimensions of velocity, and primes and overdots denote x- and
t-derivatives, respectively; here fB� Fxg stands for the expression in curly brackets in
equation (2). Over a period of oscillation, T , the work done DW is

DW ¼ �
Z T

0

½ ’yyfEI y000 þMU ’yyþU y0

 �

g�L0 dtþ
1
2
ð1 � dÞMU2 cb

Z T

0

½ ’yyy0�L0 dt

� 1
2
cNðMU=DÞ

Z T

0

Z L

0

ð ’yy2 þU ’yyy0Þdx dtþ 1
2
cT ðMU2=DÞ

Z T

0

Z L

0

’yyy0dx dt

� 1
2
c* ðM=DÞ

Z T

0

Z L

0

’yy2dx dt: ð8Þ
7See Jones (1945) and Hoerner (1985, p. 17.2), and refer to Katz & Plotkin (1991, Section 8.2).
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To obtain this equation, extensive use of integration by parts has been made, while
recalling that the oscillation is periodic. For instance,

DWT * ¼
Z T

0

Z L

0

’yyT * y00dx dt ¼ T *

Z T

0

½ ’yyy0�L0 dt� T *

Z T

0

Z L

0

’yy0y0 dx dt;

where T * 	 B ¼ d½ %TT þ ð1 � 2nÞ %ppA� þ 1
2
ð1 � dÞMU2cb. The last integrand may be written

as 1
2
½ð@=@tÞðy0Þ2� and, since y02jt¼T ¼ y02jt¼0 for all x, the second integral is zero. So is the

first integral, for a system with both ends supported, since ’yyðLÞ ¼ ’yyð0Þ ¼ 0. However, for a
cantilevered system ðd ¼ 0Þ, we do have a contribution, namely 1

2
MU2cb

R T
0

’yyLy
0
Ldt.

Proceeding in a similar way with all the terms, for a cylinder supported upstream and
free downstream, we have

DW ¼ � ð1 � f ÞMU
Z T

0

½ ’yy2 þU ’yyy0�Ldtþ
1
2MU

2cb

Z T

0

½ ’yyy0�Ldt

� 1
2cNðMU=DÞ

Z T

0

Z L

0

ð ’yy2 þU ’yyy0Þ dxdt

� 1
2
ðM=DÞ

Z T

0

Z L

0

c* ’yy2 � cT U2 ’yyy0

 �

dx dt;
ð9Þ

to obtain which we have made use of equation (3a) for EI y000jx¼L, while neglecting the
small terms involving se and %sse. The first term on the right-hand side is associated with the
inviscid forces, the second (involving cb) with the base drag at the free end, and the third
and fourth with frictional forces in the lateral direction (involving cN and c* ) and the
longitudinal direction (involving cT Þ}cf. equations (2) and (3a), and the definitions of
cN ; cT and cb in (5). This expression is a little different from those given before (Pa.ııdoussis
1966a, 1973), which are incomplete.

If DW50, oscillations are damped by the flow, while for DW > 0 oscillations are
amplified, i.e. the system will be unstable by flutter.

Examining equation (9), it is clear that, unless f ¼ 1, the dominant term controlling DW
is the first. Indeed, apart from the ð1 � f Þ factor, this term is identical to DW for internal
flow [Pa.ııdoussis 1998, equation (3.11)]. Hence, the same observations and conclusions may
be reached albeit modified by viscous effects; e.g. the requirement that y0ðL; tÞ ’yyðL; tÞ50
over a cycle must be satisfied for energy transfer from the fluid to the cylinder, which
means that over most of the cycle the free end of the cylinder slopes backwards to the
direction of motion, exactly as observed in experiments.

One important difference vis- "aa-vis the internal flow system is the existence of the second
term in equation (9), especially since (i) it works in opposition to the first term, and (ii) we
normally peg cb on f : cb ¼ 1 � f . This is discussed at the end of this subsection.

Equation (9) also shows that if f ¼ 1, the inviscid first term vanishes, i.e. the work done
by the nonviscous nonconservative forces vanishes. This signifies that the main source of
energy transfer from the fluid to the solid ceases to exist, though energy exchange may still
occur via the viscous forces; indeed, apart from the viscous forces, the system becomes like
a conservative one. Significantly, this also coincides with the suppression of single-mode
flutter and its replacement by coupled-mode flutter [see Part 3; also, compare with the
dynamics of pipes conveying fluid (Pa.ııdoussis 1998, Section 3.4.1)].

The last item of interest is what happens when f ! 0. According to equation (9), the
system would then be more strongly nonconservative for f ¼ 0 than for any other f ; yet, it
has been found that flutter with a blunt end does not occur.



Table 3

The effect of cb and e cf on flutter for f ¼ 0; b ¼ 0.47, cN ¼ cT ¼ cf

cb Ucf ðe cf ¼ 0Þ Ucf ðe cf ¼ 0.25Þ Ucf ðe cf ¼ 1.0Þ

0 9.13 9.72 14.9
1 28.1 36.9 }*
2 } } }

*See comments in the text; if Ucf exists in this case, it is very high.
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In fact, flutter is possible for f ¼ 0, provided that, artificially, cb ¼ 0. This is made clear
by the results in Table 3. Even for cb ¼ 1, flutter is possible, but at flow velocities beyond
the range of the experiments reported here.8 For e cf ¼ 1 and cb ¼ 1, the critical value
could not be pin-pointed, beyond stating that Ucf > 40, if it exists at all, since results for
such high U are very sensitive to the number of comparison functions, N, used in the
calculation; in fact, calculations with increasing N suggest that perhaps Ucf ! 1 in this
case.

For cb ¼ 2, however, no flutter is possible with f ¼ 0. As may be seen from equation (9),
the components of the first two terms involving ð ’yyy0ÞL cancel each other out. Although the
possibility of flutter via the viscous terms involving cN ; cT and c� exists, it was found not to
materialize in the calculations.

Hence, it may be concluded that, for very blunt ends, (i) divergence disappears because f
becomes too small, and (ii) flutter disappears because cb becomes too large.

4. DISCUSSION AND CONCLUSION

In this paper, experiments with cantilevered cylinders in essentially unconfined flow have
been described: (i) for completeness, some earlier experiments (1966) in which the cylinders
were horizontal, and (ii) a recently conducted set (1999–2000), involving vertical cylinders.
In the former set, in most cases, the cylinders were fitted with a thin metal blade in their
central plane, to ensure planar motion in a horizontal plane. In the latter, again in most
cases, there was no such constraining blade.

The dynamical behaviour was, in one sense, the same in both cases. Initially, as the flow
was increased, flow-induced damping was generated, but small vibration could be
observed in which the cylinder responded to the turbulence-induced fluctuating pressure
field. At higher flow velocities, the system developed divergence in its first mode, then
regained its equilibrium configuration (more or less), before developing flutter
spontaneously in its second mode. As the flow velocity continued to increase, second-
mode flutter was succeeded by third-mode flutter, and in some cases fourth-mode flutter.
This was the dynamical behaviour for a cylinder with a reasonably well-streamlined ogival
end-shape at the free end. If, however, the end was completely blunt, then neither static
(divergence) or dynamic (flutter) instabilities materialized.

In another sense, however, the dynamics in cases when there was no metal strip (blade)
embedded in the cylinder, whether vertical or horizontal, was profoundly different, at least
so far as flutter is concerned. In that case, instead of being planar, the flutter involved an
orbital, ‘‘whirling’’ mode-shape. Nevertheless, the critical flow velocities, to the extent that
this could be ascertained, were not substantially altered.
8The maximum attainable in the early experiments (horizontal system) was U ’ 14, while in the more recent set
U ’ 8.
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Some of these results have been compared with those obtained by linear theory (Part 3
of this work) and agreement has been found to be reasonable, though certainly not
brilliant.

Then, in Section 3 of this paper, a synthesis of experimental observations and energy
considerations from the equations of motion (without solving them) permitted us to draw
some general conclusions about the mechanisms of instabilities at the physical level.

Thus, it has been found that divergence is principally dependent on the presence of the
tapering end, specifically on having a free-end shape such that dA=dx=0; A being the
cross-sectional area. This was linked to the dynamics of low aspect-ratio wings. This being
an inherently nonconservative system, one should not be surprised by unusual or
paradoxical behaviour}cf. Pa.ııdoussis (1998). One such characteristic is that added drag
at the free end of the cylinder destabilizes the system for divergence.

The situation for flutter is more complex and more interesting. In this case, the system is
stabilized as the free-end shape becomes blunter, yet at the same time it becomes more
capable of extracting energy from the fluid (i.e., it becomes more strongly nonconserva-
tive)}as characterized by a decrease in the streamlining parameter f . It is shown in
Section 3.2 that, in principle, flutter could occur for a blunt downstream end, if only the
naturally occurring form (base) drag at the free end could be suppressed. For flutter,
increased drag at the free end stabilizes the system.

A number of other, more general conclusions on the dynamics of this system, especially
on the nonlinear dynamics, are presented in Part 3 of this work, where the main theoretical
results are presented (Semler et al. 2002).
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